
To appear in: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV)

Efficient Parallel Extraction of Crack-free Isosurfaces from
Adaptive Mesh Refinement (AMR) Data

Gunther H. Weber∗
Lawrence Berkeley National Laboratory

University of California, Davis

Hank Childs†

Lawrence Berkeley National Laboratory
University of California, Davis

Jeremy S. Meredith‡

Oak Ridge National Laboratory

ABSTRACT

We present a novel extraction scheme for crack-free isosurfaces
from adaptive mesh refinement (AMR) data that builds on prior
work utilizing dual grids and filling resulting gaps with stitch cells.
We use a case-table-based approach to simplify the implementation
of stitch cell generation. The most significant benefit of our new
approach is that it uses ghost data to handle parallel isosurface ex-
traction efficiently. We further present the results of applying this
method to large scale data sets and analyze its computation time on
parallel high-performance computing (HPC) platforms.

Index Terms: D.1.3 [Software]: Programming Techniques—
Concurrent Programming; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Line and curve generation

1 INTRODUCTION

Many physical phenomena, such as star formation, span large spa-
tiotemporal scales. They comprise both vast empty areas and re-
gions characterized by rapid changes in behavior. To represent the
domain in an efficient way, simulation techniques must vary the
resolution to adapt to local features. The block-structured adaptive
mesh refinement (AMR) approach [2] addresses this challenge by
creating a hierarchy of axis-aligned rectilinear grids. This represen-
tation requires less storage overhead than unstructured grids—it is
only necessary to store the layout of all grids with respect to each
other since connectivity within each rectilinear grid is implicit—
and makes it possible to represent different parts of the domain at
varying resolutions. Due to its effectiveness, an increasing number
of application domains makes use of this simulation technique.

The hierarchical representation of AMR data makes data anal-
ysis particularly challenging. It is necessary to take into account
that a finer grid may invalidate and replace the value of a given grid
cell. A greater challenge is in handling transitions between hierar-
chy levels such that no discontinuities at boundaries appear between
refinement levels. Like in many hierarchical data representations,
cracks in an extracted isosurface arise due to T-junctions between
levels. These cracks distract from a visualization’s exploration- or
communication-oriented objective and introduce questions of cor-
rectness. Furthermore, they affect the accuracy of quantities—such
as surface area—derived from an isosurface.

T-junctions originate from re-sampling the commonly cell-
centered AMR grids to a vertex centered representation for use
with the standard marching cubes (MC) isosurface extraction algo-
rithm. It is possible to avoid these T-junctions by using dual grids—
the grids defined by the cell centers—instead of re-sampling [15].
However, previous work defined stitch cell generation procedurally,
using a large number of special cases. More importantly, it gener-
ated stitch cells serially and required the entire data set to reside in

∗Email: GHWeber@lbl.gov
†Email: HRChilds@lbl.gov
‡Email: JSMeredith@ornl.gov

the memory of a single processor.
Although the basic premise of AMR simulations is to perform

simulations using less computation, commonly AMR simulations
are massively parallel and generate very large data sets. These very
large data sets mandate advanced processing techniques when per-
forming visualization and analysis, which typically comes through
parallelism. Thus, there is a need for efficient algorithms for paral-
lel crack-free isosurface extraction.

Our goal was to design an algorithm that would work in a
distributed-memory setting. Previous approaches were limited in
the data sets they could process by the system memory of a sin-
gle node. For example, a performance comparison to previous ap-
proaches would be impossible for the larger data set we considered,
as it would not fit in memory, and previous algorithms would thus
fail. We view the ability to run analysis on the system that gen-
erates the data as a key requirement. Although some sufficiently
high-memory systems do exist to handle large data sets, the trans-
fer time from the distributed-memory supercomputer to this remote
shared-memory system is generally prohibitive.

Our new approach extends from prior work using dual grids and
stitch cells to define continuous interpolation and isosurface extrac-
tion simplifying its implementation by using a case table. To fa-
cilitate parallelization, we utilize ghost cells, a concept originating
from simulation. By extending grids with a one-cell wide layer
of cells and filling these cells with values from adjacent grids or
the next coarser level, all data required to construct stitch cells are
available locally, and it becomes possible to process AMR data on
a per-grid basis.

While we designed our algorithms for the same type of compu-
tational resources as those used by the simulation, we perform anal-
ysis and visualization as a post-processing step. To make this post-
processing step applicable to results of the wide range of block-
structured AMR simulation codes in use today, our method does
not rely on data structures used by the simulation, but constructs all
necessary information in a self-contained implementation. We also
describe a parallel algorithm that initializes ghost cells with data
appropriate for our scheme and measure performance of parallel
isosurface extraction from AMR data.

In summary, our contributions are:

• A simplified stitch cell generation approach using case tables.
• Utilizing ghost cells to parallelize stitch cell generation.
• A parallel algorithm for initializing ghost cells appropriately.
• Performance measurements on current HPC platforms.

2 BACKGROUND AND RELATED WORK

To provide the background for our method, Section 2.1 describes
the data format produced by block-structured AMR simulations,
which serves as our input. Section 2.2 reviews existing work on iso-
surface extraction from hierarchical data representations. We par-
ticularly emphasize prior work on isosurface extraction from AMR
data. Our parallelization approach uses ghost data to enable stitch
cell generation on a per-grid basis in a data parallel implementa-
tion. Section 2.3 reviews both the data parallel approach and the
ghost data concept, which originated with simulation codes and is
used in visualization as well.

1

To appear in: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV)

Figure 1. Two-dimensional (2D) AMR hierarchy consisting of five
boxes in three levels. The coarsest level (colored black) has just one
box. The middle level (colored red) has two boxes which abut. The
finest level (colored blue) has two disjoint boxes.

2.1 Block-structured Adaptive Mesh Refinement

Block-structured AMR [2] uses a hierarchy of axis-aligned rectilin-
ear grids called boxes (BoxLib[4] and Chombo[1]), patches (SAM-
RAI [17]), or subgrids (Enzo [3]) as building blocks to represent
the domain. These grids are ordered in a hierarchy of levels having
increasing resolution, where data in finer levels replaces those in
coarser levels. The result is a representation that supports adapting
to resolution changes, while requiring little storage overhead for
grid structure.

Figure 1 shows an example of a two-dimensional (2D) AMR hi-
erarchy. The root level (drawn black in the figure) is the coars-
est level and covers the entire simulation domain with one or more
axis-aligned, rectilinear grids. All grids in a given level have the
same resolution, i.e., the same cell spacing.

If a level does not represent the domain at a sufficient resolution,
it can serve as the parent of a refining child level. This child level
covers a subregion of the parent level. A single box of the child
level is not necessarily contained in any single box of the parent
level—such as the left second level box in the figure—but the parent
level always contains the child level completely. Levels other than
the root level are not necessarily connected. For example, in the
figure the two boxes comprising the second level are not adjacent.

The extents of grids in a refining level always coincide with grid
cell boundaries in its parent level. As a consequence, any cell in the
coarse level is either refined completely or not refined at all. Cells
covered by finer cells become invalid. Most AMR codes still assign
meaningful values to them by interpolation, but one can think of
fine cells overriding information in coarse cells. Grid spacing in
the child level is always an integer fraction of the spacing in the
parent level. The refinenement ratio for a level specifies how many
child level cells a parent level cell contains along each axis. For
example, all levels in Figure 1 have a refinement ratio of two.

Locations and extents of individual boxes are given as integer
indices of cells of a single rectilinear grid that covers the bound-
ing box of the domain and which has the same cell spacing as all
grids of the level. In Figure 1, the two boxes of the first level (red)
have the extents of (2,3)–(7,8) and (8,1)–(13,10). Each level uses
a single grid with the same grid spacing as the level covering the
entire domain—not just the bounding box of the level—as refer-
ence frame. To translate global coordinates from a parent to a child
level, one multiplies them by the refinement ratio. The boxes in the
second level have extents of (8,8)–(18,15) and (22,6)–(25,17).

2.2 Isosurface Extraction
Isosurfaces are a common building block for the visualization and
data analysis of three-dimensional (3D) scalar fields. Most visual-
ization tools use the MC [10] method to extract isosurfaces from
scalar data. A correct implementation of this method [13] produces
watertight, closed isosurfaces when applied to single grids, but it
often exhibits cracks in the resulting isosurface when applied to hi-
erarchical data representations. These cracks are due to T-junctions
in the data representation.

This problem was first observed and fixed for octree-based mul-
tiresolution data representations [14, 16]. Most AMR simula-
tions produce cell-centered data, and only re-sampling to a vertex-
centered representation leads to T-junctions. An alternate approach
changes the grids to the dual grids formed by the cell centers of
AMR boxes, thus making it possible to utilize original values from
the simulation and to avoid T-junctions. By using a procedural
scheme, it is possible to fill gaps arising from the use of dual
grids [15]. This stitch cell generation scheme imposes an additional
condition on AMR data sets. There must be at least one layer of grid
cells between the child level and the boundary of the parent level.
BoxLib and Chombo simulations satisfy this requirement, which
ensures there are no transitions between arbitrary levels. However,
this approach still has limitations restricting its wide spread appli-
cation: (i) it defines stitch cell generation procedurally, requiring
a large number of special cases; (ii) algorithms operating on dual
grids and stitch cells need to work on a per-cell basis—processing
a cell immediately after generation—to avoid memory bottlenecks;
and most importantly, (iii) it generates stitch cells serially and re-
quires the entire data set to reside in the memory of a single pro-
cessor. Recent work [11] generalized stitch cell generation by re-
moving the restriction requiring a distance of a least one cell be-
tween the child level and parent level boundary, making crack-free
isosurfaces available to a wider range of AMR simulations, such
as Enzo [3] astrophysics simulations. However, this approach also
generates stitch cells serially and needs access to an entire data set
on a single processor.

Fang et al. [7] developed a crack-free isosurface extraction ap-
proach that preserves the original grids, which is useful for debug-
ging purposes. To avoid cracks, they create transition regions com-
prised of pyramids between grids of different resolutions. The con-
struction of these transition regions is also difficult to parallelize.

2.3 Parallelism and Ghost Cells
Parallelism—specifically data parallelism—is the most common
approach for visualizing large data sets, and it is employed by pop-
ular tools such as EnSight [6], ParaView [9], and VisIt [5]. The data
set is divided into pieces and the pieces are distributed over the pro-
cessing elements. The processing elements run identical programs
and only differ in which pieces they operate on. Many visualization
algorithms thrive in a data parallel setting because they are embar-
rassingly parallel; they are able to process each cell independently
of the others. Other algorithms, however, require data from the sur-
rounding cells. For these algorithms, artifacts may occur around the
boundaries of each piece, since some of the surrounding data will
be located on other processing elements.

The typical approach for dealing with these artifacts is “ghost
cells”: one or more extra layers of cells placed around the bound-
ary. These ghost cells complement the regular cells; they ensure
that the data from surrounding cells are always available. Ghost
cells are processed like regular cells, but the results that come from
ghost cells are discarded before rendering. This approach works
well because the ghost cells duplicate regular cells and the results
from just the regular cells are sufficient.

There are multiple sources for ghost cells. Simulation codes reg-
ularly utilize ghost cells for their own calculations. In some cases,
the simulation writes out its ghost cells alongside the regular ones,

2

To appear in: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV)

meaning that ghost cells are readily available with no additional
processing. When the simulation removes ghost cells from its out-
put, though, it is up to the visualization tool to generate this data.
Sometimes the simulation code describes how its pieces abut, eas-
ing the process of identifying which cells should be duplicated as
ghost. The module described in this paper follows this approach;
it uses abutment information from the simulation code to re-create
ghost data. Further, this sort of information is regularly available
for the AMR data sets considered in this paper. This is not the only
approach, however. The D3 module [12] redistributes the entire
data set to optimize rendering and creates ghost data in the process.
This approach works for all data sets, but incurs significant costs as
so much data must be moved. Finally, the approach described in
this paper and in D3 require collective communication and can not
work in an out-of-core setting. Isenburg et al. [8] devised a scheme
for special configurations—specifically block-decomposed rectilin-
ear grids—that can perform in an out-of-core setting. Of course, the
algorithm described in this paper only specifies what type of ghost
cells are required and is agnostic to the method of ghost generation.
If the technique described by Isenburg et al. [8] was adapted to work
with AMR grids, then it would also be suitable for our algorithm.

3 ALGORITHM

We base our crack-free isosurface extraction method on previous
work using dual grids and procedurally generated stitch cells [15].
Our main design goals for improving this approach were: (i) en-
abling data parallel stitch cell generation and isosurface extraction
that operate on individual AMR boxes separately, and (ii) main-
taining a rectilinear grid representation as long as possible. As dis-
cussed in the previous section, we achieve the first goal—the ability
to handle boxes individually—using ghost cells.

Like in the previous approach [15], we use stitch cells corre-
sponding to linear VTK cells (hexahedron, pyramid, wedge and
tetrahedron) with values specified at the defining vertices. Stitch
cells connect a box to its neighboring boxes in the same level, or
containing/adjacent boxes in the coarser parent level. To construct
stitch cells and assign values to their vertices, we require access to
adjacent samples in these boxes. Consequently, for our approach, a
single layer of ghost cells around a box is always sufficient to de-
termine appropriate stitch cell vertex values. To ensure that stitch
cell vertex values are consistent, the values in the ghost cells must
satisfy the following conditions:

• Stitch cell generation requires one layer of ghost data around
the entire mesh to create stitch cells to all surrounding grids.
The only exceptions are boundaries that coincide with the
boundary of the domain. Here, there is no need to connect
to other grids and hence no need for ghost data.

• If the ghost cell coincides with the cell of an adjacent box,
stitch cell generation needs access the value of that adjacent
cell; the ghost cell must be filled with the value from the ad-
jacent box.

• If no neighboring box overlapping the ghost cell exists in the
same level, the stitch cell must be filled with the value from
the cell it refines in the parent level. (Since a level is always
completely contained in its parent level, there will always be
such a cell.) That way, several cells in the fine box (the num-
ber of cells corresponds to the refinement ratio) are filled with
the value of the coarse grid cell, which simplifies look-up for
connecting the coarse grid value in stitch cell generation.

• When generating ghost data for a box in level i, only data in
the same level i and the parent level i−1 are considered. Data
from finer levels can be ignored since we generate stitch cells
connecting a level to its parent level. Data values in a finer

level (greater than i) are handled when generating stitch cells
for boxes in that level.

Section 3.1 describes generating this ghost information. This
layer of ghost cells around the current grid, along with access to
the bounding box hierarchy of AMR data, fully supports pure local
stitch cell generation on a per grid basis as discussed in Section 3.2.

In simulations, ghost data is normally used at the boundaries
to support, e.g., the computation of gradients using only data lo-
cally available. For visualization purposes, these cells are typically
blanked out, or any generated geometry corresponding to them is
removed. It is possible to use a similar concept to handle cells in a
box that are invalidated by a finer resolution box. Instead of remov-
ing individual cells from a box—either converting boxes to unstruc-
tured meshes or a set of boxes that leaves out refined regions—it is
more computationally and storage efficient to keep values in these
cells and mark them as “ghost.” This gives rise to a new type of
“ghost cell,” i.e., one ghost cell marked as invalid because there
is a more accurate data representation available. We handle ghost
data at the boundaries as well as ghost data due to invalidation by
finer grids, by using an array of flags that specify for each grid cell
whether it is a ghost cell or not. If a cell is flagged as ghost, the
flag also specifies its type. All visualization algorithms operate on
the original rectilinear grids and use the ghost array information to
blank out ghost cells. This is the standard implementation in VisIt.
In the dual grid, a cell is marked as ghost if any of the cells in the
original grid corresponding to its vertices is labeled as a ghost cell,
i.e., if it connects any samples that are flagged as invalid.

3.1 Ghost Cell Generation
The ghost cell generation happens immediately after the boxes are
partitioned over the processing elements and loaded. When the data

a	

b	

c	

d	
e	
f	
g	 h	
i	 j	
k

(i)	

BoxToProcessingElement[B0]	 =	 PE0	
BoxToProcessingElement[B1]	 =	 PE0	
BoxToProcessingElement[B2]	 =	 PE1	

B0	 B1	

B2	

MsgsTo[PE0]:	
	 	 	 {	 B1,	 I=0,	 J=1-‐4:	
	 	 	 	 	 	 	 	 a,	 a,	 b,	 b	 }	
	 	 	 {	 B1,	 I=0,	 J=5:	 c	 }	
	

(ii)	

PE0	 PE1	 MsgsTo[PE0]:	
	 	 	 {	 B1,	 I=1-‐2,	 J=5:	 i,	 j	 }	
MsgsTo[PE1]:	
	 	 	 	 none	

a	

b	

c	

MsgsTo[PE1]:	
	 	 	 {	 B2,	 I=0,	 J=0:	 b	 }	
	 	 	 {	 B2,	 I=0,	 J=1-‐2:	 c,	 c	 }	
	 	 	 {	 B2,	 I=1-‐2,	 J=0:	 g,	 h	 }	
	 	

PE0	 PE1	 MsgsFor[PE0]:	
	 	 	 {	 B1,	 I=0,	 J=1-‐4:	 a,	 a,	 b,	 b	 }	
	 	 	 {	 B1,	 I=0,	 J=5:	 c	 }	
	 	 	 {	 B1,	 I=1-‐2,	 J=5:	 i,	 j	 }	
	

MsgsFor[PE1]:	
	 	 	 {	 B2,	 I=0,	 J=0:	 b	 }	
	 	 	 {	 B2,	 I=1-‐2,	 J=0:	 g,	 h	 }	
	 	 	 {	 B2,	 I=0,	 J=1-‐2:	 c,	 c	 }	
	

PE0	
a	 (g)	
b	 (g)	

d	
e	
f	
g	 h	
i	 (g)	 j	 (g)	

a	 (g)	

b	 (g)	
c	 (g)	

c	 (g)	 i	 j	
c	 (g)	 k	

b	 (g)	 g	 (g)	 h	 (g)	

PE1	

(iii)	

(iv)	

Figure 2. An example of ghost cell generation. (i) shows three boxes
(B0, B1, and B2), and their relationship. Only the values that need to
be exchanged are labeled. (i) also shows the result of the Initialize
phase, with BoxToProcessingElement stating that B0 and B1 reside
on Processing Element #0 (PE0) and P2 on Processing Element #1
(PE1). (ii) shows the result of the Pack phase. Each processing ele-
ment constructs messages to the other processing elements. The
messages contain the destination box, the data, and the location
of that data on the destination patch. (iii) shows the result of the
Exchange phase. Each processing element now has all of the mes-
sages for its own patches. (iv) shows the result of the Unpack phase.
The boxes now overlap spatially with their ghost data, although they
are displayed apart for clarity. Cells that are marked as ghost have a
“(g)” in their label.

3

To appear in: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV)

(i)

Case 0

Case 1

Case 2a

Case 2b

Case 3

Case 4

v0

v3

v1

v2

(ii) (iii)

Figure 3. Stitch cell generation. We map dual grid cells (i) that contain at least one ghost cell (orange) to stitch cells using a case table (ii) and
obtain stitch cells (iii).

is loaded, information about the boxes is also loaded and exists on
every processing element. This information is called BoxAbutment
and, for some box B, BoxAbutment[B] lists the boxes, B0, B1, ...
Bn−1 that B abuts with and the locations of those abutments. This
information includes abutment for boxes at the same refinement
level and the nesting for boxes at different refinement levels. The
ghost cell generation process requires collective communication; all
processing elements enter and exit the routine at the same time.

The ghost cells are created via four phases:

• Initialize: Each processing element identifies which boxes it
has loaded. The processing elements then exchange informa-
tion to create a map of which processing element each box
resides on. This map is called BoxToProcessingElement.

• Pack: Every processing element iterates over the boxes it
owns. For each box B, its abutting patches Bi are determined
using BoxAbutment[B]. For each of these Bi, one layer of cells
in the abutment region is converted to a message and this mes-
sage is appended into the overall message for the processing
element designated by BoxToProcessElement[Bi].

• Exchange: Each processing element sends its messages to the
others. This is implemented with an MPI Alltoallv com-
mand, allowing the MPI implementation to choose a commu-
nication paradigm best suited for making effective use of the
interconnect.

• Unpack: Every processing element extends each of its boxes
with ghost cells. The necessary data for the ghost cells is
available from the incoming messages received during the Ex-
change phase.

An example of this process is described in Figure 2.

3.2 Stitch Cell Generation
In addition to using ghost cells to parallelize stitch cell generation,
we also wanted to simplify the implementation of stitch cell gener-
ation. The original stitch cell generation approach [15] considered
many special cases, requiring a substantial implementation effort.
To reduce this effort, we consider the dual grid of a box that also
includes all of its ghost cells. Using this “complete” dual grid, it is
possible to view stitch cell generation as “mapping” dual grid cells

that have one or more vertices corresponding to ghost zone cells of
the original box to stitch cells via a case table.

Figure 3(i) illustrates this stitch cell generation approach for a
2D box, marked as a bold, black rectangle in the figure. Within
the box, a blue background indicates regular cells, and a light blue
background marks ghost cells. Bold grey lines indicate two adja-
cent boxes in the same level that need to be considered when gen-
erating stitch cells. The figure shows the complete dual grid as
orange and grey rectangles. Grey rectangles make up the dual grid
of the actual box and connect only vertices corresponding regular
cells of the box. Orange rectangles contain at least one vertex cor-
responding to a ghost cell and consequently connect the box to its
surroundings. Using a case table, it is possible to convert these dual
grid cells into stitch cells.

Figure 3(iii) shows the stitch cells resulting from this conversion.
To construct a case table for this mapping, we observe that the type
of stitch cell depends on two criteria. To convert a given dual grid
cell into a stitch cell, the first step is to determine which of its ver-
tices belong to the parent level and which of its vertices belong to
the child level. This configuration determines the major case. Fig-
ure 3(ii) shows that in 2D, five base cases exist that correspond to
zero, one, two, three or four vertices belonging to the child level. It
is possible to derive all major cases from these five base cases.

Some of the major cases can have sub-cases, depending on
whether any of the vertices belonging to the parent level correspond
to the same parent level vertex. Case 2a connects two child level
vertices to two parent level vertices. Since the dual grid used to
generate stitch cells is at the resolution of the child level, and since
each parent level cell contains multiple refined cells (corresponding
to the refinement ratio), it is possible that the two vertices belong-
ing to the parent level are actually a single parent level vertex. This
case occurs, e.g., for the second orange dual grid cell in the top row
of Figure 3(i). In that case, it is necessary to generate a stitch cell
connecting to that single vertex. We note, in two dimensions Case
2 is the only case with sub-cases. Case 1 is the only other case
with more than one parent level vertex where such a configuration
may be possible. However, along both axes, the parent level ver-
tex is connected to a child level vertex. This means that along both
axes there is a crossing from a refined to an unrefined region. Since
a parent cell is either refined or unrefined, this connection implies
that along each axis there is a crossing of parent cells and no two
vertices can map to the same parent level grid cell.

4

To appear in: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV)

P0 P1

P2P3

P4 P5

P6P7

Case 0:
Does not occur!

Case 1:
P(1, 5, 6, 2, 0);
P(4, 7, 6, 5, 0);
P(2, 6, 7, 3, 0)

Case 2a:
W(0, 3, 7, 1, 2, 6);
W(0, 7, 4, 1, 6, 5)

P2/3
P6/7

P4/5

Case 2b:
T(0, 1, 2/3, 6/7);
T(0, 4/5, 1, 6/7)

Case 3:
P(4, 7, 6, 5, 0); T(1, 5, 2, 0);
T(5, 6, 2, 0); T(2, 7, 3, 0);
T(2, 6, 7, 0)

Case 4:
T(0, 2, 3, 7);
I(4, 5, 1, 0, 7, 6, 2)

Case 5a:
H(0, 1, 2, 3, 4, 5, 6, 7)

P4/5

P6/7

Case 5b:
W(0, 4/5, 1, 3, 6/7, 2)

P5/6P4/7

Case 5c:
W(1, 5/6, 2, 0, 4/7, 3)

P4/5/6/7

Case 5d:
P(0, 1, 2, 3, 4/5/6/7)

Case 6:
T(0, 1, 2, 4); T(0, 2, 3, 4);
T(1, 5, 2, 4); T(2, 5, 6, 4);
T(4, 7, 6, 2); T(3, 7, 4, 2)

Case 7:
P(0, 4, 5, 1, 2);
P(0, 3, 7, 4, 2); T(2, 5, 6, 4);
T(4, 7, 6, 2)

Case 8:
T(0, 1, 2, 4); P(1, 5, 6, 2, 4);
P(0, 3, 7, 4, 2); T(4, 7, 6, 2)

Case 9:
T(1, 5, 6, 4); T(1, 6, 2, 3);
T(4, 3, 7, 6); T(0, 3, 4, 1);
T(3, 6, 4, 1)

Case 10:
T(1, 5, 6, 4); T(1, 6, 2, 3);
T(4, 3, 7, 6); T(0, 3, 4, 1);
T(3, 6, 4, 1)

Case 11:
P(2, 6, 7, 3, 4);
P(0, 4, 5, 1, 2); T(2, 5, 6, 4);
T(0, 3, 4, 2)

Case 12:
T(0, 1, 3, 4); T(1, 2, 3, 4);
P(1, 5, 6, 2, 4);
P(2, 6, 7, 3, 4)

Case 13:
P(0, 1, 2, 3, 4);
P(1, 5, 6, 2, 4);
P(2, 6, 7, 3, 4)

Case 14a:
W(0, 3, 4, 1, 2, 5);
W(3, 7, 4, 2, 6, 5)

P6/7

P0/1

Case 14b:
P(2, 5, 4, 3, 0/1);
P(2, 3, 4, 5, 6/7)

Case 15:
W(3, 7, 4, 2, 6, 5);
P(2, 5, 4, 3, 0); T(0, 1, 2, 5)

Case 16a:
W(0, 3, 4, 1, 2, 5);
W(3, 7, 4, 2, 6, 5)

P6/7

Case 16b:
W(0, 3, 4, 1, 2, 5);
P(2, 3, 4, 5, 6/7)

Case 17:
T(1, 5, 6, 4); T(1, 6, 2, 3);
T(4, 3, 7, 6); T(0, 3, 4, 1);
T(3, 6, 4, 1)

Case 18:
T(1, 5, 6, 4); T(1, 6, 2, 3);
T(4, 3, 7, 6); T(0, 3, 4, 1);
T(3, 6, 4, 1)

Case 19:
P(0, 1, 2, 3, 6); T(1, 4, 5, 6);
T(0, 4, 1, 6); T(0, 3, 4, 6);
T(3, 7, 4, 6)

Case 20:
T(0, 1, 2, 5); T(0, 2, 3, 6);
T(0, 3, 4, 6); T(3, 7, 4, 6);
T(0, 4, 5, 6); T(2, 5, 6, 0)

Case 21:
T(3, 7, 4, 6);
I(5, 1, 0, 4, 6, 2, 3)

Case 22:
H(0, 1, 2, 3, 4, 5, 6, 7)

Figure 4. 22 base cases for 3D stitch cell generation from dual grid cells. The tesselation into cells is the same as that produced by the orignal
approach [15]. Case 0 does not occur since at least one vertex is refined. We use it to show the numbering of vertices. Tesselation subdivides
into pyramids (P), wedge (W), tetrahedra (T), hexahedral cells (H) and the irregular cell type (I) described by Weber et al. [15]. Vertices are
specified in the order expected by VTK.

For the purpose of determining whether the two parent level ver-
tices are identical, we use the index of grid cells of the box. If we
start counting indices at −1 along each axis, the cell with index 0
will be the first non-ghost cell of a patch. For a fixed refinement
ratio between levels, we look at the index of the cell along an axis
and compute the remainder modulo the refinement ratio. Consider
the dual stitch cell having box cell (i, j) as origin. This dual cell is
defined by the box cells (i, j), (i+1, j), (i+1, j+1) and (i, j+1)
as vertices. If the remainder of i+1 modulo the refinement ratio is
zero, this original cell lies in a different parent level cell than the
cell with index i, and the two parent level vertices in the i direction
are different. If the remainder of i+1 module the refinement ratio
is non-zero, the two parent level vertices are identical in the i di-
rection. The same method can be used in the j direction. The fact
that we use the same coarse cell value to fill all ghost cells overlap-
ping it simplifies data access, as we can read from any ghost cell
the correct value for the parent level cell.

In 2D, our approach works as follows. We first use the bounding
box AMR hierarchy information to compute an array that specifies

an integer identifier of the neighboring box overlapping this ghost
cell, or −1 if there are none and the cell corresponds to the parent
level. We then iterate over all dual cells that contain at least one
ghost cell or the original box. We compute a case number anal-
ogous to marching cubes by setting those bits in a 4-bit integer
corresponding to refined vertices. Whether a vertex is refined or
not can be determined using the previously computed neighboring
box information. In the case table, we also store whether we need
to check along the i or j direction to determine the sub-case for
Case 2. We then use the method outlined in the previous paragraph
to compute the sub-case. After, we look up appropriate values for
child and parent level vertices according to the global index. To
avoid creating the same stitch cell for multiple grids, we follow the
convention that a stitch cell belongs to the grid with the lowest inte-
ger identifier. Using the neighborhood information, we discard any
stitch cells that contain a vertex of a same-level patch with a lower
integer identifier.

The 3D case works analogous. Similar to marching cubes with-
out inversion there are 22 base cases [13], which we show in Fig-

5

To appear in: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV)

(i) (ii) (iii)

Figure 5. Isosurface (temperature of 1225K) for the hydrogen flame data set. (i) Close-up view of the isosurface extracted via re-sampling
to a vertex-centered format. Cracks are easily visible. (ii) Close-up view of the same region extracted using our new method. There are no
discontinuities in the isosurface. (iii) View of the entire crack-free isosurface extracted using our new approach. The isosurface consists of
approximately 2.2 milion triangles.

ure 4. We use these base cases to generate tessellations for all re-
finement configuration. Unlike in the 2D cases, it is now possible
to have either two (e.g., Case 2b, Case 5b/c) or four (only Case 5d)
coarse vertices corresponding to a single parent level vertex. Thus,
we have many cases without sub-cases, a few cases (Case 2, 14 and
16) with two sub-cases and one case (Case 5) with four sub-cases.
We store information in the case table: how many sub-cases there
are for each case and along which axes we need to check for iden-
tical parent level vertices to compute a sub-case. We then read the
stitch cell from the case table.

4 RESULTS

To test our algorithm we examined results from two data sets on
the “Hopper” system at the National Energy Research Scientific
Computing Center (NERSC). “Hopper” is a Cray X6 with 6,384
nodes comprising 153,216 processor cores connected by a propri-
etary “Cray Gemini Interconnect” that share 212TB of memory
and achieve a peak performance of 1.28 Petaflops/s. Each node
contains 24 cores—provided by two twelve-core AMD “Magny-
Cours” 2.1GHz processors—with 32GB (6,000 nodes) or 64GB
(384 nodes) of shared memory. Each core has its own L1 and
L2 caches, with 64KB and 512KB respectively, and six cores on
the “MagnyCours” processor share one 6MB L3 cache. “Hop-
per” provides two 1PB Lustre file systems as local scratch space.
Each scratch space file system has peak data transfer performance
of 35GB/s. Hopper also has access to the NERSC global file sys-
tem, which is mounted on all NERSC systems and has a peak data
transfer performance of 15 GB/s.

The first data set is a relatively small 3D BoxLib AMR simu-
lation of a hydrogen flame. It consists of 2,581 boxes in three
hierarchy levels containing a total of 48,531,968 grid cells. The
simulation data size for all 22 scalar variables is 8.1GB, which is
approximately 377MB per scalar variable. Figure 5 highlights the
difference between an isosurface extracted from a re-sampled data
set and the continuous isosurface provided by our new approach.
We stored this data set on the local scratch file system.

The second data set is a larger 3D BoxLib AMR simulation of

Figure 6. Isosurface (temperature of 1225K) for methane flame data
set extracted using our algorithm. The isosurface consists of approx-
imately 29.7 milion triangles.

a methane flame. This data set consists of 7,747 boxes in 3 levels
containing a total of 1,525,420,032 grid cells. The data set has a
total size of 592GB for 52 scalar variables, which corresponds to
a size of approximately 11.4GB per scalar variable. We stored this
data set on the global NERSC file system. Figure 6 shows an iso-
surface extracted using our approach. Both data sets were provided
by the Center for Computational Sciences and Engineering (CCSE)
at the Lawrence Berkeley National Laboratory (LBNL).

To test performance and examine any scaling limitations, we ex-
ecuted a full visualization pipeline on these test data sets that in-
cluded disk I/O, ghost data generation, stitch cell generation, and
contouring (of the entire data consisting of dual grids and stitch

6

To appear in: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV)

 0

 1

 2

 3

 4

 5

 6

 7

 8

24 48 72 96 120 144 168 192 216 240

Ti
m

e
[s

]

Number of cores

Read Data and Synchronization
Ghost Data Generation

Stitch Cell Generation
Contouring

Other

Figure 7. Total runtime of a full visualization pipeline execution on the
hydrogen flame data set under strong scaling. Bars are colored by
each phase of the pipeline.

cells). We ran this operation on a variety of core counts on the
“Hopper” system in a strong scaling mode.

Figure 7 shows the runtime of this visualization operation on
the smaller hydrogen flame data set. (Note that the “Other” time
includes some final synchronization, e.g., due to a nonuniform dis-
tribution of geometry generated from the contour operation on each
task.) In this figure, we see excellent scaling of the stitch cell al-
gorithm, as well as of the following contouring operation, even on
this small data set. Unfortunately, we reach the best overall perfor-
mance with this visualization pipeline at only 120 cores.

Although disk I/O is one factor limiting the scaling in this exam-
ple, the main bottleneck is the ghost data generation phase, as we
see its runtime increase with core count. One hypothesis for this
effect is that as the number of tasks increases, the number of adja-
cent domains each task can possess decreases, and thus the number
of ghost cells which must be sent to another MPI task will increase.
To explore this effect further, we examined the total amount of data
communicated among the tasks during the ghost cell generation
phase. The results are shown in Figure 8(i). We see that between
24 and 240 cores, the amount of data communicated among MPI
tasks does increase. However, this increase is only approximately

15%, and so the increased quantity of data alone is insufficient to
explain the greater runtime of almost 4× in ghost cell generation
across this same range of core counts. Instead, the increase in run-
time is mostly due to inter-node communication. For example, each
node on “Hopper” contains 24 cores, and so when we go from 24
to 48 cores, we now must traverse the system interconnect during
the ghost cell communication phase, and as we add more nodes,
a greater percentage of communication traffic must cross compute
node boundaries. Figure 8(ii) shows a plot of of ghost commu-
nication time as a function of data transferred between the nodes.
The error bars show the timings for three runs—the maximum and
minimum time as boundaries of the bar and the third time as an
additional mark between them. We note, the ghost zone creation
time increases close to linearly with the data transferred between
different nodes. Figure 8(iii) illustrates that a very simple commu-
nication model can predict communication times fairly accurately.
For predicting ghost zone generation times, we assume two data
transfer rates: one for transfers within a node and another rate for
transfers between nodes.

We also examined performance of this same visualization
pipeline on the larger methane flame data set. The results, shown
in Figure 9, show a better scaling performance for total runtime
on this larger data set than on the smaller hydrogen flame data set.
Note that these results no longer show an increased runtime in the
ghost cell generation for increased core counts. There are two rea-
sons for this. First, on a larger data set, the ghost cells are a smaller
percentage of the total data set size. Second, as this problem was
too large to run on fewer than three compute nodes, runs on even
the smallest number of cores already involved a substantial portion
of inter-node communication.

The individual contributions of each phase of the computation
towards these runtimes are shown in Figure 10. Here, we see clearly
the strong scaling of the stitch cell generation; on this and on the
smaller hydrogen flame problem, it scales consistently up to the
largest tested number of tasks and composes the smallest runtime
among the pipeline phases. We also see that the runtime of ghost
data generation is approximately flat up to 312 cores for a prob-
lem of this size; the greatest source of scaling inconsistency on this
problem is due to the I/O phase.

5 CONCLUSIONS AND FUTURE WORK

We have presented a novel algorithm for artifact-free isosurface
generation for AMR data in a parallel setting and demonstrated
its performance. The algorithm is ideal for the parallel data flow
network environments that are currently popular and used in tools

 0

 20

 40

 60

 80

 100

 120

24 48 72 96 120 144 168 192 216 240

D
at

a
tra

ns
fe

rre
d

[M
By

te
]

Number of cores

LB Block (Intranode)
LB Block (Internode)

(i)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80

G
ho

st
 c

om
m

un
ic

at
io

n
tim

e
[s

]

Data transferred between nodes [MByte]

(ii)

 0

 1

 2

 3

 4

 5

24 48 72 96 120 144 168 192 216 240

G
ho

st
 c

om
m

un
ic

at
io

n
tim

e
[s

]

Number of cores

Measured Ghost Communication Time
Predicted Ghost Communication Time

(iii)

Figure 8. (i) Total amount of data transferred globally during the ghost cell communication phase of a visualization pipeline execution on the
hydrogen flame data set. (ii) Ghost communication time as a function of inter-node data communication. (iii) Comparison of actual ghost zone
communication time to a simple model that assumes two constant data transfer rates for intra- and inter-node communication.

7

To appear in: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV)

 0

 5

 10

 15

 20

 25

 30

 35

72 96 120 144 168 192 216 240 264 288 312

Ti
m

e
[s

]

Number of cores

Read Data and Synchronization
Ghost Data Generation

Stitch Cell Generation
Contouring

Other

Figure 9. Total runtime of a full visualization pipeline execution on the
methane flame data set under strong scaling.

 0

 2

 4

 6

 8

 10

 12

 14

72 96 120 144 168 192 216 240 264 288 312

Ti
m

e
[s

]

Number of cores

Read Data and Synchronization
Ghost Data Generation

Stitch Cell Generation
Contouring

Other

Figure 10. Runtime of each phase of a full visualization pipeline exe-
cution on the methane flame data set under strong scaling.

like VisIt and ParaView: it can be implemented as a filter, works
with very large AMR data sets, and it makes no assumptions about
which boxes are present on each processing element. Further, the
stitch cell generation portion is fast and scales well.

Our algorithm depends on the presence of ghost data. Sometimes
this ghost data is readily available from the simulation code, espe-
cially in an in situ setting. But, to demonstrate that our algorithm
can work in all circumstances, we also described a method for dy-
namically generating ghost data for any block-structured AMR data
set. This method can be inefficient, particularly for smaller data sets
where ghost cells are a large proportion of the total number of cells;
writing a faster ghost data generation module would be excellent fu-
ture work. Of course, the primary contribution we describe is the
stitch cell generation algorithm itself, which works in a distributed
memory parallel setting, and our algorithm would be compatible
with any future ghost data generation modules. It should be pos-
sible to use the case table approach for AMR data sets where a
child level is not surrounded by a layer of cells, such as Enzo AMR
simulations and handle the same range of data sets as the approach
by Moran et al. [11]. The main modifications necessary to support
such data sets are implementing ghost cell communication between

arbitrary levels and changing the criterion to determine whether two
parent level vertices in a ghost cell are identical.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Science, Ad-
vanced Scientific Computing Research, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231 and DE-AC05-
00OR22725 and the use of resources at the National Energy Re-
search Scientific Computing (NERSC) Center. We thank Terry
Ligocki from the LBNL Applied Numerical Algorithms Group
(ANAG) for generating data sets used to debug and test our method.
We also thank the members of the LBNL CCSE for providing the
data sets used to benchmark our method.

DISCLAIMER

This document was prepared as an account of work sponsored by
the United States Government. While this document is believed to
contain correct information, neither the United States Government
nor any agency thereof, nor the Regents of the University of Cali-
fornia, nor any of their employees, makes any warranty, express or
implied, or assumes any legal responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the United States Gov-
ernment or any agency thereof, or the Regents of the University
of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Gov-
ernment or any agency thereof or the Regents of the University of
California.

REFERENCES

[1] Applied Numerical Algorithms Group. Chombo. https://
commons.lbl.gov/display/chombo/.

[2] M. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 82:64–84, 1989.

[3] G. L. Bryan, T. Abel, and M. L. Norman. Achieving extreme resolu-
tion in numerical cosmology using adaptive mesh refinement: resolv-
ing primordial star formation. In Proc. ACM/IEEE Supercomputing
Conference, 2001. doi: 10.1145/582034.58204.

[4] Center for Computational Sciences and Engineering. Boxlib. https:
//ccse.lbl.gov/BoxLib/.

[5] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, K. Bon-
nell, M. Miller, G. H. Weber, C. Harrison, D. Pugmire, T. Fogal,
C. Garth, A. Sanderson, E. W. Bethel, M. Durant, D. Camp, J. M.
Favre, O. Rübel, P. Navrátil, M. Wheeler, P. Selby, and F. Vivodtzev.
VisIt: An end-user tool for visualizing and analyzing very large data.
In Proc. SciDAC 2011. http://www.mcs.anl.gov/uploads/
cels/papers/scidac11/final/childs_hank.pdf.

[6] Computational Engineering International Inc. EnSight User’s Manual.
[7] D. C. Fang, G. H. Weber, H. Childs, E. Brugger, B. Hamann, and

K. Joy. Extracting geometrically continuous isosurfaces from adaptive
mesh refinement data. In Proc. 2004 Hawaii International Conference
on Computer Sciences, pages 216–224, 2004.

[8] M. Isenburg, P. Lindstrom, and H. Childs. Parallel and Streaming Gen-
eration of Ghost Data for Structured Grids. IEEE Computer Graphics
and Applications, 30(3):32–44, 2010.

[9] C. C. Law, A. Henderson, and J. Ahrens. An Application Architecture
for Large Data Visualization. In Proc. IEEE Symposium on Parallel
and Large-data Visualization (PVG), pages 125–128, 2001.

[10] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution
3D surface construction algorithm. Computer Graphics (Proc. ACM
SIGGRAPH 87), 21(4):163–169, 1987.

[11] P. Moran and D. Ellsworth. Visualization of AMR data with multi-
level dual-mesh interpolation. IEEE Transactions on Visualization and
Computer Graphics, 17(12):1862–1871, 2011.

8

To appear in: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV)

[12] K. Moreland, L. Avila, and L. A. Fisk. Parallel unstructured volume
rendering in ParaView. In Visualization and Data Analysis 2007, Proc.
SPIE-IS&T Electronic Imaging, volume 6495, page 64950F, 2007.
doi: 10.1117/12.704533.

[13] G. M. Nielson. On marching cubes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 9(3):341–351, 2003.

[14] R. Shu, C. Zhou, and M. S. Kankanhalli. Adaptive marching cubes.
The Visual Computer, 11(4):202–217, 1995.

[15] G. H. Weber, O. Kreylos, T. J. Ligocki, J. M. Shalf, H. Hagen,
B. Hamann, and K. I. Joy. Extraction of crack-free isosurfaces from
adaptive mesh refinement data. In Hierarchical and Geometrical
Methods in Scientific Visualization, pages 19–40. Springer Verlag,
2003.

[16] R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of
regular volume data by adaptive reconstruction of isosurfaces. The
Visual Computer, 15(2):100–111, 1999.

[17] A. Wissink, R. Hornung, S. Kohn, S. Smith, and N. Elliott. Large
scale parallel structured AMR calculations using the SAMRAI frame-
work. In Proc. ACM/IEEE Supercomputing Conference, 2001. doi:
10.1109/SC.2001.10029.

9

